Inicio
/
Física
/
A Potter's Wheel Moves from Rest to an Angular Speed of 0.10rev/s in 31.5 S. Assuming Constant Angular Acceleration, What Is Its

Problemas

A potter's wheel moves from rest to an angular speed of 0.10rev/s in 31.5 s. Assuming constant angular acceleration, what is its angular acceleration in rad/s^2 Answer in units of rad/s^2 Answer in units of rad/s^2

Roztwór

Geraldine maestro · Tutor durante 5 años
Weryfikacja ekspertów
4.6 (298 Votos)

Respuesta

To find the angular acceleration, we can use the formula:Angular acceleration = (Final angular velocity - Initial angular velocity) / TimeFirst, we need to convert the final angular velocity from rev/s to rad/s:Final angular velocity = 0.10 rev/s * 2π rad/rev = 0.20π rad/sNow we can calculate the angular acceleration:Angular acceleration = (0.20π rad/s - 0 rad/s) / 31.5 sAngular acceleration = 0.20π / 31.5 rad/s²Angular acceleration ≈ 0.020 rad/s²Therefore, the angular acceleration of the potter's wheel is approximately 0.020 rad/s².