Inicio
/
Matemáticas
/

Problemas

1 2 Multiple Choice 1 point For functions f(x)=6x^2 and g(x)=x+5 find (gcirc f)(x) 6x^2+60x+150 6x+5x^2 6x^2+5 180 Clear my selection Multiple Choice 1 point If the point (8,-14) is reflected over both the x-axis and the y-axis, where will the new point (x',y') be located? (8,-14) (8,14) (-8,-14) (-8,14) Clear my selection

Roztwór

Gabriel maestro · Tutor durante 5 años
Weryfikacja ekspertów
4 (82 Votos)

Respuesta

Let's go through each question step by step.### Question 1: Finding \((g \circ f)(x)\)Given: We need to find \((g \circ f)(x)\), which means we need to find \(g(f(x))\).1. First, compute \(f(x)\): 2. Next, substitute \(f(x)\) into \(g(x)\): 3. Apply the function to : So, \((g \circ f)(x) = 6x^2 + 5\).The correct answer is: ### Question 2: Reflecting the Point \((8, -14)\)To reflect a point over both the x-axis and the y-axis, we need to:1. Reflect over the x-axis: This changes the sign of the y-coordinate. 2. Reflect over the y-axis: This changes the sign of the x-coordinate. So, the new point \((x', y')\) will be located at \((-8, 14)\).The correct answer is: ### Summary of Answers:1. \((g \circ f)(x) = 6x^2 + 5\)2. The new point \((x', y')\) is \((-8, 14)\)