Inicio
/
Matemáticas
/
Solve the System Using Any Method. Explain Your Choice of Method. 7. Y=-x^2+4 Y=-4x+8 X^2+3x+y=0 2x+y=5 9. 2x^2+4x-y=-2 X^2+y=2

Problemas

Solve the system using any method. Explain your choice of method. 7. y=-x^2+4 y=-4x+8 x^2+3x+y=0 2x+y=5 9. 2x^2+4x-y=-2 x^2+y=2

Roztwór

Mauricio élite · Tutor durante 8 años
Weryfikacja ekspertów
4.4 (271 Votos)

Respuesta

Let's solve each system of equations step by step.### System 7:1. 2. To solve this system, we can use substitution since both equations are already solved for .**Step 1: Set the two expressions for equal to each other:** **Step 2: Rearrange the equation to form a quadratic equation:** **Step 3: Factor the quadratic equation:** **Step 4: Solve for :** **Step 5: Substitute back into one of the original equations to find :** So, the solution to the system is: ### System 9:1. 2. To solve this system, we can use substitution or elimination. Here, we'll use substitution.**Step 1: Solve the second equation for :** **Step 2: Substitute into the first equation:** **Step 3: Simplify the equation:** **Step 4: Rearrange the equation to form a quadratic equation:** **Step 5: Factor the quadratic equation:** **Step 6: Solve for :** **Step 7: Substitute and back into to find :**For : For : So, the solutions to the system are: ### Summary:- For System 7: The solution is \( (x, y) = (2, 0) \).- For System 9: The solutions are \( (x, y) = (0, 2) \) and \( \left(-\frac{4}{3}, \frac{2}{9}\right) \).