Problemas
r a y=lim _(x arrow 0) (1-cos x)/(x)=0
Roztwór
Joaquín
professionell · Tutor durante 6 años
4.4
(249 Votos)
Respuesta
Para resolver la expresión dada, primero simplifiquemos la fracción:
Ahora, podemos evaluar el límite cuando
tiende a
:$\lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2