Inicio
/
Matemáticas
/

Problemas

r a y=lim _(x arrow 0) (1-cos x)/(x)=0

Roztwór

Joaquín professionell · Tutor durante 6 años
Weryfikacja ekspertów
4.4 (249 Votos)

Respuesta

Para resolver la expresión dada, primero simplifiquemos la fracción: Ahora, podemos evaluar el límite cuando tiende a :$\lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2