Problemas
What is the domain and range of f(x)=log_(4)(x+1)+2ir inequality notation? Domain Range all real numbers xgt -1 ygt -1 xleqslant -1 ygeqslant -1 xgt 2 ygt 2 xgeqslant 2 ygeqslant 2 x=4
Roztwór
Orlando
veterano · Tutor durante 10 años
4.2
(224 Votos)
Respuesta
To determine the domain and range of the function \( f(x) = \log_{4}(x+1) + 2 \), we need to analyze the behavior of the logarithmic function.### Domain:The argument of the logarithm,
, must be greater than zero because the logarithm is only defined for positive values. Therefore, we have:
So, the domain of \( f(x) \) is:
### Range:The range of a logarithmic function \( \log_{4}(x+1) \) is all real numbers because as
approaches
from the right, \( \log_{4}(x+1) \) approaches
, and as
increases without bound, \( \log_{4}(x+1) \) increases without bound.Adding 2 to the logarithmic function shifts the entire range up by 2 units. Therefore, the range of \( f(x) = \log_{4}(x+1) + 2 \) is:
So, the correct answers are:- Domain:
- Range: