Problemas
Find each product. 17) (4m-3)(8m+1) 19) (5n-4)(4n^2+4n-1) 18) (7x+5)(4x-4) 20) (n-6)(n^2+7n+4)
Roztwór
Victoria
maestro · Tutor durante 5 años
4.7
(162 Votos)
Respuesta
17) To find the product of
, we can use the distributive property (also known as the FOIL method for binomials). First, multiply the first terms:
.Next, multiply the outer terms:
.Then, multiply the inner terms-3 \cdot 8m = -24m
-3 \cdot 1 = -3
32m^2 + 4m - 24m - 3 = 32m^2 - 20m - 3
(4m-3)(8m+1)
32m^2 - 20m - 3
(5n-4)(4n^2+4n-1)
5n \cdot 4n^2 = 20n^3
5n \cdot 4n = 20n^2
5n \cdot (-1) = -5n
-4 \cdot 4n^2 = -16n^2
-4 \cdot 4n = -16n
-4 \cdot (-1) = 4
20n^3 + 20n^2 - 5n - 16n^2 - 16n + 4 = 20n^3 + 4n^2 - 21n + 4
(5n-4)(4n^2+4n-1)
20n^3 + 4n^2 - 21n + 4
(7x+5)(4x-4)
7x \cdot 4x = 28x^2
7x \cdot (-4) = -28x
5 \cdot 4x = 20x
5 \cdot (-4) = -20
28x^2 - 28x + 20x - 20 = 28x^2 - 8x - 20
(7x+5)(4x-4)
28x^2 - 8x - 20
(n-6)(n^2+7n+4)
n \cdot n^2 = n^3
n \cdot 7n = 7n^2
n \cdot 4 = 4n
-6 \cdot n^2 = -6n^2
-6 \cdot 7n = -42n
-6 \cdot 4 = -24
n^3 + 7n^2 + 4n - 6n^2 - 42n - 24 = n^3 + n^2 - 38n - 24
(n-6)(n^2+7n+4)
n^3 + n^2 - 38n - 24$.