Inicio
/
Matemáticas
/
Find the Solution of the Exponential Equation 15e^x-3=7 The Exact Solution, in Terms of the Natural Logarithm Is: X=square The

Problemas

Find the solution of the exponential equation 15e^x-3=7 The exact solution, in terms of the natural logarithm is: x=square The approximate solution rounded to 4 decimal places is: x=square

Roztwór

Eduardo professionell · Tutor durante 6 años
Weryfikacja ekspertów
4 (296 Votos)

Respuesta

To solve the exponential equation , follow these steps:1. **Isolate the exponential term:** Add 3 to both sides: 2. **Solve for :** Divide both sides by 15: 3. **Take the natural logarithm of both sides:** Using the property \(\ln(e^x) = x\): So, the exact solution in terms of the natural logarithm is: 4. **Find the approximate solution:** Use a calculator to find the numerical value of \(\ln\left(\frac{2}{3}\right)\): So, the approximate solution rounded to 4 decimal places is: Therefore, the exact solution is \(x = \ln\left(\frac{2}{3}\right)\) and the approximate solution is .