Pagina de inicio
/
Matemáticas
/
Subtract the polynomials. SHOW ALL WORK for full credit. (4x^2-2x+3)-(-2x^2+6x-3) Find the product. Show all work. (x-3)(4x^2-2x+3)

Problemas

Subtract the polynomials. SHOW ALL WORK for full
credit.
(4x^2-2x+3)-(-2x^2+6x-3)
Find the product. Show all work.
(x-3)(4x^2-2x+3)

Subtract the polynomials. SHOW ALL WORK for full credit. (4x^2-2x+3)-(-2x^2+6x-3) Find the product. Show all work. (x-3)(4x^2-2x+3)

Solución

avatar
Ángelamaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.7 (307 votos)

Responder

To subtract the polynomials, we need to distribute the negative sign to each term in the second polynomial and then combine like terms.<br /><br />$(4x^{2}-2x+3)-(-2x^{2}+6x-3)$<br /><br />Distribute the negative sign:<br />$(4x^{2}-2x+3) + (2x^{2}-6x+3)$<br /><br />Combine like terms:<br />$(4x^{2} + 2x^{2}) + (-2x - 6x) + (3 + 3)$<br />$= 6x^{2} - 8x + 6$<br /><br />Therefore, the result of subtracting the polynomials is $6x^{2} - 8x + 6$.<br /><br />To find the product of $(x-3)(4x^{2}-2x+3)$, we need to use the distributive property and multiply each term in the first polynomial by each term in the second polynomial.<br /><br />$(x-3)(4x^{2}-2x+3)$<br /><br />Multiply each term in the first polynomial by each term in the second polynomial:<br />$x(4x^{2}) + x(-2x) + x(3) - 3(4x^{2}) - 3(-2x) - 3(3)$<br /><br />Simplify:<br />$4x^{3} - 2x^{2} + 3x - 12x^{2} + 6x - 9$<br /><br />Combine like terms:<br />$4x^{3} - 14x^{2} + 9x - 9$<br /><br />Therefore, the product of $(x-3)(4x^{2}-2x+3)$ is $4x^{3} - 14x^{2} + 9x - 9$.
Haz clic para calificar: