Problemas

Find the vertex of the parabola y=x^2-2x Simplify both coordinates and write them as proper fractions,improper fractions, or inte (square ,square )
Solución

Saraprofessionell · Tutor durante 6 años

4.4 (207 votos)
Responder
The vertex of the parabola is \((1, -1)\).
Explicar
## Step 1<br />The given equation is \(y = x^2 - 2x\). This is a quadratic equation in the form \(y = ax^2 + bx + c\), where \(a = 1\), \(b = -2\), and \(c = 0\).<br /><br />## Step 2<br />The vertex of a parabola given by the equation \(y = ax^2 + bx + c\) is given by the formula \((-b/2a, f(-b/2a))\).<br /><br />## Step 3<br />Substitute the values of \(a\) and \(b\) into the formula to find the x-coordinate of the vertex.<br /><br />### \(x = -(-2)/(2*1) = 1\)<br /><br />## Step 4<br />Substitute \(x = 1\) into the original equation to find the y-coordinate of the vertex.<br /><br />### \(y = (1)^2 - 2*(1) = -1\
Haz clic para calificar: