Pagina de inicio
/
Matemáticas
/
Find the equation of the axis of symmetry for the parabola y=x^2+6x+7 Simplify any numbers and write them as proper fractions, improper fractions, or integers. square

Problemas

Find the equation of the axis of symmetry for the parabola y=x^2+6x+7
Simplify any numbers and write them as proper fractions, improper fractions, or integers.
square

Find the equation of the axis of symmetry for the parabola y=x^2+6x+7 Simplify any numbers and write them as proper fractions, improper fractions, or integers. square

Solución

avatar
Estebanmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.2 (282 votos)

Responder

To find the equation of the axis of symmetry for the parabola $y=x^{2}+6x+7$, we can use the formula $x=-\frac{b}{2a}$, where $a$ and $b$ are the coefficients of the quadratic term and the linear term, respectively.<br /><br />In this case, $a=1$ and $b=6$. Plugging these values into the formula, we get:<br /><br />$x=-\frac{6}{2(1)}$<br /><br />Simplifying the expression, we have:<br /><br />$x=-\frac{6}{2}=-3$<br /><br />Therefore, the equation of the axis of symmetry for the parabola $y=x^{2}+6x+7$ is $x=-3$.
Haz clic para calificar: