Pagina de inicio
/
Física
/
Two spheres with charges of +6.00times 10^-6C and -5.0times 10^-6 O attract each other with a force of 7.0times 10^-2 Newton. r=sqrt (k(vert qmvert )/(F)) Determine the separation distance between the two objects. 3.86 m 1.96 m 5.00 m D 2.99 m

Problemas

Two spheres with charges of +6.00times 10^-6C and -5.0times 10^-6 O attract each other with a force of 7.0times 10^-2 Newton.
r=sqrt (k(vert qmvert )/(F))
Determine the separation distance between the two objects.
3.86 m
1.96 m
5.00 m
D 2.99 m

Two spheres with charges of +6.00times 10^-6C and -5.0times 10^-6 O attract each other with a force of 7.0times 10^-2 Newton. r=sqrt (k(vert qmvert )/(F)) Determine the separation distance between the two objects. 3.86 m 1.96 m 5.00 m D 2.99 m

Solución

avatar
Brisaprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
4.2 (289 votos)

Responder

0.62 m

Explicar

## Step 1: <br />Identify the given values:<br />- Charge 1 (\( q_1 \6.00 \times 10^{-6} \, \text{C} \)<br />- Charge 2 (\( q_2 \)) = \( -5.0 \times 10^{-6} \, \text{C} \)<br />- Force (\( F \)) = \( 7.0 \times 10^{-2} \, \text{N} \)<br />- Coulomb's constant (\( k \)) = \( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)<br /><br />## Step 2:<br />Use the formula for the separation distance between two charged objects:<br />### \[<br />r = \sqrt{k \frac{|q_1 q_2|}{F}}<br />\]<br /><br />## Step 3:<br />Substitute the given values into the formula:<br />### \[<br />r = \sqrt{(8.99 \times 10^9) \frac{|(6.00 \times 10^{-6})(-5.0 \times 10^{-6})|}{7.0 \times 10^{-2}}}<br />\]<br /><br />## Step 4:<br />Calculate the numerator:<br />### \[<br />(8.99 \times 10^9) \times (6.00 \times 10^{-6}) \times (5.0 \times 10^{-6}) = 269.85 \times 10^{-3}<br />\]<br /><br />## Step 5:<br />Divide by the force:<br />### \[<br />\frac{269.85 \times 10^{-3}}{7.0 \times 10^{-2}} = 3.855 \times 10^{-3}<br />\]<br /><br />## Step 6:<br />Take the square root to find the separation distance:<br />### \[<br />r = \sqrt{3.855 \times 10^{-3}} \approx 0.62 \, \text{m}<br />\]
Haz clic para calificar: