Problemas

Solve for h. h^2-15h-14=0 Write each solution as an integer, proper fraction,or improper fraction in simplest form. If there are multiple solutions,separate them with commas. h= square
Solución

Antonellaprofessionell · Tutor durante 6 años

4.7 (117 votos)
Responder
To solve the quadratic equation \( h^2 - 15h - 14 = 0 \), we can use the quadratic formula, which is given by:<br /><br />\[ h = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]<br /><br />For the equation \( h^2 - 15h - 14 = 0 \), the coefficients are:<br />\( a = 1 \),<br />\( b = -15 \),<br />\( c = -14 \).<br /><br />Plugging these values into the quadratic formula, we get:<br /><br />\[ h = \frac{-(-15) \pm \sqrt{(-15)^2 - 4(1)(-14)}}{2(1)} \]<br />\[ h = \frac{15 \pm \sqrt{225 + 56}}{2} \]<br />\[ h = \frac{15 \pm \sqrt{281}}{2} \]<br /><br />Since \(\sqrt{281}\) is not a perfect square, we cannot simplify it further. Therefore, the solutions are:<br /><br />\[ h = \frac{15 + \sqrt{281}}{2}, \quad h = \frac{15 - \sqrt{281}}{2} \]<br /><br />So, the solutions for \( h \) are:<br /><br />\[ h = \frac{15 + \sqrt{281}}{2}, \frac{15 - \sqrt{281}}{2} \]
Haz clic para calificar: