Problemas

If x^(2)/(3)=4 , what is x^2 ? x^2=square
Solución

Alfonsomaestro · Tutor durante 5 años

3.2 (161 votos)
Responder
To solve for \( x^2 \) given that \( x^{\frac{2}{3}} = 4 \), we can follow these steps:<br /><br />1. Start with the given equation:<br /> \[<br /> x^{\frac{2}{3}} = 4<br /> \]<br /><br />2. Raise both sides of the equation to the power of \(\frac{3}{2}\) to isolate \( x \):<br /> \[<br /> \left( x^{\frac{2}{3}} \right)^{\frac{3}{2}} = 4^{\frac{3}{2}}<br /> \]<br /><br />3. Simplify the left side:<br /> \[<br /> x = 4^{\frac{3}{2}}<br /> \]<br /><br />4. Calculate \( 4^{\frac{3}{2}} \):<br /> \[<br /> 4^{\frac{3}{2}} = \left( 4^{\frac{1}{2}} \right)^3 = 2^3 = 8<br /> \]<br /><br />So, \( x = 8 \).<br /><br />5. Now, find \( x^2 \):<br /> \[<br /> x^2 = 8^2 = 64<br /> \]<br /><br />Therefore, the value of \( x^2 \) is:<br />\[<br />x^2 = 64<br />\]
Haz clic para calificar: