Problemas

3. For the balanced equation shown below, how many moles of CO2 be produced by 0.03610 moles of C6H6O C_(6)H_(6)O+7O_(2)arrow 6CO_(2)+3H_(2)O
Solución

Gabrielveterano · Tutor durante 11 años

4.6 (253 votos)
Responder
To determine how many moles of \( CO_2 \) are produced by 0.03610 moles of \( C_6H_6O \), we need to use the stoichiometric relationship from the balanced chemical equation:<br /><br />\[ C_6H_6O + 7O_2 \rightarrow 6CO_2 + 3H_2O \]<br /><br />From the equation, we see that 1 mole of \( C_6H_6O \) produces 6 moles of \( CO_2 \).<br /><br />Given:<br />- Moles of \( C_6H_6O \) = 0.03610 moles<br /><br />Using the stoichiometric ratio (1 mole of \( C_6H_6O \) produces 6 moles of \( CO_2 \)):<br /><br />\[ \text{Moles of } CO_2 = 0.03610 \, \text{moles of } C_6HO \times \frac{6 \, \text{moles of } CO_2}{1 \, \text{mole of } C_6H_6O} \]<br /><br />\[ \text{Moles of } CO_2 = 0.2166 \, \text{moles} \]<br /><br />Therefore, 0.03610 moles of \( C__6O \) will produce 0.2166 moles of \( CO_2 \).
Haz clic para calificar: