Problemas

Find the distance between the points. (-18,6),(6,-12) square
Solución

Constanzaélite · Tutor durante 8 años

4.1 (157 votos)
Responder
The distance between the points \((-18,6)\) and \((6,-12)\) is 30.
Explicar
## Step 1<br />The problem involves finding the distance between two points in a two-dimensional space. The formula to find the distance between two points \((x1, y1)\) and \((x2, y2)\) is given by:<br />### \(\sqrt{(x2-x1)^2 + (y2-y1)^2}\)<br /><br />## Step 2<br />Substitute the given points into the formula. The points given are \((-18,6)\) and \((6,-12)\). So, \(x1 = -18\), \(y1 = 6\), \(x2 = 6\), and \(y2 = -12\).<br /><br />## Step 3<br />Calculate the distance using the formula:<br />### \(\sqrt{(6 - (-18))^2 + ((-12) - 6)^2}\)<br /><br />## Step 4<br />Simplify the expression inside the square root:<br />### \(\sqrt{(24)^2 + (-18)^2}\)<br /><br />## Step 5<br />Calculate the squares and add them:<br />### \(\sqrt{576 + 324}\)<br /><br />## Step 6<br />Add the results:<br />### \(\sqrt{900}\)<br /><br />## Step 7<br />Finally, calculate the square root of 900 to get the distance:<br />### 30
Haz clic para calificar: