Problemas

Question Express in simplest radical form. sqrt (98) Answer Attempt out of 2 square
Solución

Zenónmaestro · Tutor durante 5 años

4.7 (271 votos)
Responder
To simplify the radical expression \(\sqrt{98}\), we need to find the prime factorization of 98 and then simplify the square root.<br /><br />First, let's find the prime factorization of 98:<br />\[ 98 = 2 \times 49 \]<br />\[ 49 = 7 \times 7 \]<br /><br />So, the prime factorization of 98 is:<br />\[ 98 = 2 \times 7^2 \]<br /><br />Now, we can rewrite the square root using this factorization:<br />\[ \sqrt{98} = \sqrt{2 \times 7^2} \]<br /><br />We know that the square root of a product is the product of the square roots:<br />\[ \sqrt{2 \times 7^2} = \sqrt{2} \times \sqrt{7^2} \]<br /><br />Since \(\sqrt{7^2} = 7\), we have:<br />\[ \sqrt{98} = \sqrt{2} \times 7 \]<br /><br />Therefore, the simplest radical form of \(\sqrt{98}\) is:<br />\[ \boxed{7\sqrt{2}} \]
Haz clic para calificar: