Problemas

What is 1.25times 10^2+3.6times 10^1 rounded to the correct number of significant digits? 1.61times 10^2 1.605times 10^2 1.6times 10^2 1.610times 10^2
Solución

Pilarélite · Tutor durante 8 años

4.6 (238 votos)
Responder
To solve this problem, we need to add the two numbers and round the result to the correct number of significant digits.<br /><br />Given:<br />$1.25\times 10^{2}+3.6\times 10^{1}$<br /><br />Step 1: Convert the numbers to standard form.<br />$1.25\times 10^{2} = 125$<br />$3.6\times 10^{1} = 36$<br /><br />Step 2: Add the numbers.<br />$125 + 36 = 161$<br /><br />Step 3: Round the result to the correct number of significant digits.<br />The number with the least number of significant digits is $3.6\times 10^{1}$, which has 2 significant digits. Therefore, the result should be rounded to 2 significant digits.<br /><br />Rounding $161$ to 2 significant digits gives $1.6\times 10^{2}$.<br /><br />Therefore, the correct answer is $1.6\times 10^{2}$.
Haz clic para calificar: