Pagina de inicio
/
Matemáticas
/
What is 1.25times 10^2+3.6times 10^1 rounded to the correct number of significant digits? 1.61times 10^2 1.605times 10^2 1.6times 10^2 1.610times 10^2

Problemas

What is 1.25times 10^2+3.6times 10^1 rounded to the correct number of significant digits?
1.61times 10^2
1.605times 10^2
1.6times 10^2
1.610times 10^2

What is 1.25times 10^2+3.6times 10^1 rounded to the correct number of significant digits? 1.61times 10^2 1.605times 10^2 1.6times 10^2 1.610times 10^2

Solución

avatar
Pilarélite · Tutor durante 8 años
expert verifiedVerificación de expertos
4.6 (238 votos)

Responder

To solve this problem, we need to add the two numbers and round the result to the correct number of significant digits.<br /><br />Given:<br />$1.25\times 10^{2}+3.6\times 10^{1}$<br /><br />Step 1: Convert the numbers to standard form.<br />$1.25\times 10^{2} = 125$<br />$3.6\times 10^{1} = 36$<br /><br />Step 2: Add the numbers.<br />$125 + 36 = 161$<br /><br />Step 3: Round the result to the correct number of significant digits.<br />The number with the least number of significant digits is $3.6\times 10^{1}$, which has 2 significant digits. Therefore, the result should be rounded to 2 significant digits.<br /><br />Rounding $161$ to 2 significant digits gives $1.6\times 10^{2}$.<br /><br />Therefore, the correct answer is $1.6\times 10^{2}$.
Haz clic para calificar: