Pagina de inicio
/
Matemáticas
/
Let A=[} 7&0 0&2 ] Find each matrix below .If a matrix is not defined, click on "Undefined". (a) BA=square (b) AB=square (c) B^2=square

Problemas

Let A=[} 7&0 0&2 ]
Find each matrix below .If a matrix is not defined, click on "Undefined".
(a) BA=square 
(b) AB=square 
(c) B^2=square

Let A=[} 7&0 0&2 ] Find each matrix below .If a matrix is not defined, click on "Undefined". (a) BA=square (b) AB=square (c) B^2=square

Solución

avatar
Manuelamaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.6 (183 votos)

Responder

(a) \(BA = [\begin{matrix} 7&0\\ 0&-6\end{matrix} ]\)<br /><br />(b) \(AB = [\begin{matrix} 7&0\\ 0&-6\end{matrix} ]\)<br /><br />(c) \(B^{2} = [\begin{matrix} 1&0\\ 0&9\end{matrix} ]\)

Explicar

## Step 1<br />To find the product of two matrices, we need to multiply each element of the rows of the first matrix by the corresponding elements of the columns of the second matrix and add them up.<br /><br />## Step 2<br />(a) For \(BA\), we multiply each element of the rows of matrix B by the corresponding elements of the columns of matrix A and add them up.<br /><br />## Step 3<br />(b) For \(AB\), we multiply each element of the rows of matrix A by the corresponding elements of the columns of matrix B and add them up.<br /><br />## Step 4<br />(c) For \(B^{2}\), we multiply each element of the rows of matrix B by the corresponding elements of the columns of matrix B and add them up.
Haz clic para calificar: