Pagina de inicio
/
Matemáticas
/
Find the equation of the axis of symmetry for the parabola y=-5x^2-4x-8 Simplify any numbers and write them as proper fractions, improper fractions, or integers. square

Problemas

Find the equation of the axis of symmetry for the parabola y=-5x^2-4x-8
Simplify any numbers and write them as proper fractions, improper fractions, or integers.
square

Find the equation of the axis of symmetry for the parabola y=-5x^2-4x-8 Simplify any numbers and write them as proper fractions, improper fractions, or integers. square

Solución

avatar
Beatrizveterano · Tutor durante 11 años
expert verifiedVerificación de expertos
4.5 (260 votos)

Responder

To find the equation of the axis of symmetry for the parabola $y=-5x^{2}-4x-8$, we can use the formula $x = -\frac{b}{2a}$, where $a$ and $b$ are the coefficients of $x^2$ and $x$ respectively.<br /><br />In this case, $a = -5$ and $b = -4$. Plugging these values into the formula, we get:<br /><br />$x = -\frac{-4}{2(-5)}$<br /><br />Simplifying the expression, we have:<br /><br />$x = \frac{4}{10}$<br /><br />$x = \frac{2}{5}$<br /><br />Therefore, the equation of the axis of symmetry for the parabola $y=-5x^{2}-4x-8$ is $x = \frac{2}{5}$.
Haz clic para calificar: