Pagina de inicio
/
Matemáticas
/
Let f(x)=x^2-14x+48 and g(x)=x^2-x^3 Find (fg)(x) and ((f)/(g))(x) (fg)(x)=square ((f)/(g))(x)=square State the domain of each. Domain of (fg)(x) square Domain of ((f)/(g))(x) square : all real numbers xvert xneq 0 : xvert xneq 0,-1 Evaluate the following. (fg)(-4)= square ((f)/(g))(-4)= square xvert xneq 0,1

Problemas

Let f(x)=x^2-14x+48 and g(x)=x^2-x^3 Find (fg)(x) and ((f)/(g))(x)
(fg)(x)=square 
((f)/(g))(x)=square 
State the domain of each.
Domain of (fg)(x) square 
Domain of ((f)/(g))(x) square 
: all real numbers
 xvert xneq 0 
:  xvert xneq 0,-1 
Evaluate the following.
(fg)(-4)= square 
((f)/(g))(-4)= square 
 xvert xneq 0,1

Let f(x)=x^2-14x+48 and g(x)=x^2-x^3 Find (fg)(x) and ((f)/(g))(x) (fg)(x)=square ((f)/(g))(x)=square State the domain of each. Domain of (fg)(x) square Domain of ((f)/(g))(x) square : all real numbers xvert xneq 0 : xvert xneq 0,-1 Evaluate the following. (fg)(-4)= square ((f)/(g))(-4)= square xvert xneq 0,1

Solución

avatar
Gerardomaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.4 (388 votos)

Responder

\((fg)(x) = (x^2 - 14x + 48) \cdot (x^2 - x^3)\)<br /><br />\((f/g)(x) = (x^2 - 14x + 48) / (x^2 - x^3)\)<br /><br />Domain of \((fg)(x)\): All real numbers<br /><br />Domain of \((f/g)(x)\): All real numbers except \(x = 0\) and \(x = 1\)<br /><br />\((fg)(-4) = (-4)^2 - 14(-4) + 48 \cdot ((-4)^2 - (-4)^3)\)<br /><br />\((f/g)(-4) = ((-4)^2 - 14(-4) + 48) / ((-4)^2 - (-4)^3)\)

Explicar

## Step 1<br />The problem involves the operations of function multiplication and division. The functions given are \(f(x) = x^2 - 14x + 48\) and \(g(x) = x^2 - x^3\).<br /><br />## Step 2<br />To find the product of the two functions, we multiply them together. This is represented as \((fg)(x) = f(x) \cdot g(x)\).<br /><br />## Step 3<br />To find the quotient of the two functions, we divide \(f(x)\) by \(g(x)\). This is represented as \((f/g)(x) = f(x) / g(x)\).<br /><br />## Step 4<br />The domain of a function is the set of all possible input values (x-values) for which the function is defined. For the product and quotient of, the domain is the intersection of the domains of the individual functions.<br /><br />## Step 5<br />The domain of the product \((fg)(x)\) is all real numbers, because both \(f(x)\) and \(g(x)\) are defined for all real numbers.<br /><br />## Step 6<br />The domain of the quotient \((f/g)(x)\) is all real numbers except where the denominator \(g(x)\) equals zero. This is because division by zero is undefined.<br /><br />## Step 7<br />To evaluate \((fg)(-4)\) and \((f/g)(-4)\), we substitute \(x = -4\) into the expressions for \((fg)(x)\) and \((f/g)(x)\).
Haz clic para calificar: