Problemas

D. 10. What are the factors of 2x^2-5x+3 Select TWO correct answers. x+2 2x+4 2x-3 2x+3 x+1 x-1
Solución

Deliamaestro · Tutor durante 5 años

4.5 (135 votos)
Responder
To find the factors of the quadratic expression $2x^2 - 5x + 3$, we need to factorize it.<br /><br />First, let's find the roots of the quadratic equation $2x^2 - 5x + 3 = 0$.<br /><br />We can use the quadratic formula to find the roots:<br />$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$<br /><br />In this case, $a = 2$, $b = -5$, and $c = 3$.<br /><br />Plugging these values into the quadratic formula, we get:<br />$x = \frac{5 \pm \sqrt{25 - 24}}{4}$<br />$x = \frac{5 \pm 1}{4}$<br /><br />So, the roots are:<br />$x_1 = \frac{6}{4} = \frac{3}{2}$<br />$x_2 = \frac{4}{4} = 1$<br /><br />Now, we can write the quadratic expression as:<br />$2x^2 - 5x + 3 = 2(x - \frac{3}{2})(x - 1)$<br /><br />Simplifying further, we get:<br />$2x^2 - 5x + 3 = (2x - 3)(x - 1)$<br /><br />Therefore, the factors of $2x^2 - 5x + 3$ are:<br />$2x - 3$<br />$x - 1$<br /><br />So, the correct answers are:<br />$2x - 3$<br />$x - 1$
Haz clic para calificar: