Pagina de inicio
/
Matemáticas
/
Write the equation that models the function described. Shifts the parent function, y=log_(3)x 7 units left and reflects across the x-axis. y=-log_(3)(x+7) y=-log_(3)(x-7) y=-7log_(3)x y=7-log_(3)x y=-7-log_(3)x

Problemas

Write the equation that models the function described.
Shifts the parent function, y=log_(3)x 7 units left and reflects across the x-axis.
y=-log_(3)(x+7)
y=-log_(3)(x-7)
y=-7log_(3)x
y=7-log_(3)x
y=-7-log_(3)x

Write the equation that models the function described. Shifts the parent function, y=log_(3)x 7 units left and reflects across the x-axis. y=-log_(3)(x+7) y=-log_(3)(x-7) y=-7log_(3)x y=7-log_(3)x y=-7-log_(3)x

Solución

avatar
Jesúsmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.0 (265 votos)

Responder

The equation that models the function described is \(y = -\log_{3}(x + 7)\).

Explicar

## Step 1<br />The problem involves the transformation of the parent function \(y = \log_{3}x\). The transformations are a shift of 7 units to the left and a reflection across the x-axis.<br /><br />## Step 2<br />The shift of the function 7 units to the left is represented by the transformation \(x \rightarrow x + 7\). This is because shifting a function to the left is achieved by replacing \(x\) with \(x + \text{shift}\), where \(\text{shift}\) is the number of units the function is to be shifted.<br /><br />## Step 3<br />The reflection of the function across the x-axis is represented by the transformation \(y \rightarrow -y\). This is because reflecting a function across the x-axis is achieved by multiplying the function by -1.<br /><br />## Step 4<br />Combining the transformations from steps 2 and 3, we get the transformed function as \(y = -\log_{3}(x + 7)\).
Haz clic para calificar: