Problemas

6 Multiple Choice 5 points 4Al+3S_(2)arrow 2Al_(2)S_(3) Find the moles of Al_(2)S_(3) if there are 5.25 moles of S_(2) 2.33 mol 5.25 mol 4.17 mol 1.47 mol
Solución

Enriquemaestro · Tutor durante 5 años

4.0 (262 votos)
Responder
To find the moles of $Al_{2}S_{3}$, we need to use the stoichiometry of the balanced chemical equation.<br /><br />Given information:<br />- Balanced chemical equation: $4Al + 3S_{2} \rightarrow 2Al_{2}S_{3}$<br />- Moles of $S_{2}$: 5.25 mol<br /><br />Step 1: Determine the mole ratio between $S_{2}$ and $Al_{2}S_{3}$.<br />From the balanced equation, we can see that 3 moles of $S_{2}$ produce 2 moles of $Al_{2}S_{3}$.<br /><br />Step 2: Calculate the moles of $Al_{2}S_{3}$.<br />Moles of $Al_{2}S_{3}$ = (Moles of $S_{2}$) × (2 moles of $Al_{2}S_{3}$ / 3 moles of $S_{2}$)<br />Moles of $Al_{2}S_{3}$ = 5.25 mol × (2 / 3)<br />Moles of $Al_{2}S_{3}$ = 3.5 mol<br /><br />Therefore, the correct answer is 3.5 mol.
Haz clic para calificar: