Pagina de inicio
/
Matemáticas
/
Find the exact values of sinalpha ,cosalpha ,tanalpha ,cscalpha ,secalpha and cotalpha where a is an angle in standard position whose terminal side contains the point (-8,-8) Find sinalpha Select the correct choice below and, if necessary.fill in the answer box to; complete your choice. A. sinalpha =square (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression ) B. sinalpha is undefined.

Problemas

Find the exact values of sinalpha ,cosalpha ,tanalpha ,cscalpha ,secalpha  and cotalpha  where a is an angle in standard position whose terminal side contains the point (-8,-8)
Find sinalpha  Select the correct choice below and, if necessary.fill in the answer box to; complete your choice.
A. sinalpha =square 
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression )
B. sinalpha  is undefined.

Find the exact values of sinalpha ,cosalpha ,tanalpha ,cscalpha ,secalpha and cotalpha where a is an angle in standard position whose terminal side contains the point (-8,-8) Find sinalpha Select the correct choice below and, if necessary.fill in the answer box to; complete your choice. A. sinalpha =square (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression ) B. sinalpha is undefined.

Solución

avatar
Danielmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.3 (221 votos)

Responder

To find the exact values of the trigonometric functions, we first need to determine the angle $\alpha$ whose terminal side contains the point $(-8,-8)$. We can do this by finding the reference angle and then using the appropriate quadrant.<br /><br />Step 1: Find the reference angle.<br />The reference angle is the acute angle formed between the terminal side of the angle and the x-axis. Since the point $(-8,-8)$ is in the third quadrant, we can use the Pythagorean theorem to find the reference angle.<br /><br />Let $x = -8$ and $y = -8$. Then, $r = \sqrt{x^2 + y^2} = \sqrt{(-8)^2 + (-8)^2} = \sqrt{64 + 64} = \sqrt{128} = 8\sqrt{2}$.<br /><br />The reference angle is $\theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{-8}{-8}\right) = \arctan(1) = \frac{\pi}{4}$.<br /><br />Step 2: Determine the angle $\alpha$.<br />Since the point $(-8,-8)$ is in the third quadrant, the angle $\alpha$ is $\pi + \theta = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$.<br /><br />Step 3: Find the trigonometric functions.<br />Using the angle $\alpha = \frac{5\pi}{4}$, we can find the trigonometric functions as follows:<br /><br />$\sin\alpha = \sin\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$<br /><br />$\cos\alpha = \cos\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$<br /><br />$\tan\alpha = \tan\left(\frac{5\pi}{4}\right) = 1$<br /><br />$\csc\alpha = \csc\left(\frac{5\pi}{4}\right) = -\sqrt{2}$<br /><br />$\sec\alpha = \sec\left(\frac{5\pi}{4}\right) = -\sqrt{2}$<br /><br />$\cot\alpha = \cot\left(\frac{5\pi}{4}\right) = 1$<br /><br />Therefore, the correct choice is A. $\sin\alpha = -\frac{\sqrt{2}}{2}$.
Haz clic para calificar: