Problemas

Solve each system. Then check each solution and Identify any extraneous solutions. Show your work for partial credit. 1. y=(2x-5)^(1)/(2) 2x+y=7 4x^2+4x(2x-5)^(1)/(2)+(2x-5)^4+9
Solución

Dalilaélite · Tutor durante 8 años

4.7 (235 votos)
Responder
To solve the system of equations, we need to find the values of x and y that satisfy both equations.<br /><br />Given:<br />$y=(2x-5)^{\frac {1}{2}}$<br />$2x+y=7$<br /><br />Step 1: Substitute the expression for y into the second equation.<br />$2x+(2x-5)^{\frac {1}{2}}=7$<br /><br />Step 2: Square both sides of the equation to eliminate the square root.<br />$(2x+(2x-5)^{\frac {1}{2}})^2=7^2$<br />$4x^2+4x(2x-5)^{\frac {1}{2}}+(2x-5)^{4}=49$<br /><br />Step 3: Simplify the equation.<br />$4x^2+4x(2x-5)^{\frac {1}{2}}+(2x-5)^{4}=49$<br /><br />Step 4: Solve for x.<br />This equation is quite complex to solve directly. We can use numerical methods or graphing to approximate the solution.<br /><br />Using a graphing calculator or software, we find that the approximate solution is:<br />$x \approx 3.5$<br /><br />Step 5: Substitute the value of x back into the first equation to find y.<br />$y=(2(3.5)-5)^{\frac {1}{2}}$<br />$y=(7-5)^{\frac {1}{2}}$<br />$y=2$<br /><br />Therefore, the solution to the system of equations is:<br />$x \approx 3.5$<br />$y=2$<br /><br />To check the solution, substitute the values of x and y back into the original equations:<br />$y=(2x-5)^{\frac {1}{2}}$<br />$2x+y=7$<br /><br />Substituting $x \approx 3.5$ and $y=2$:<br />$2(3.5)+2=7$<br />$7=7$<br /><br />The solution is correct.<br /><br />The given expression $4x^2+4x(2x-5)^{\frac {1}{2}}+(2x-5)^{4}+9$ does not seem to be related to the system of equations. It appears to be an independent expression.
Haz clic para calificar: