Pagina de inicio
/
Matemáticas
/
Graph the exponential function. g(x)=(4)/(3)(2)^x Plot five points on the graph of the function. Then click on the graph-a-function button.

Problemas

Graph the exponential function.
g(x)=(4)/(3)(2)^x
Plot five points on the graph of the function. Then click on the graph-a-function button.

Graph the exponential function. g(x)=(4)/(3)(2)^x Plot five points on the graph of the function. Then click on the graph-a-function button.

Solución

avatar
Joaquínmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.7 (223 votos)

Responder

To graph the exponential function $g(x)=\frac {4}{3}(2)^{x}$, we need to plot five points on the graph of the function. Let's choose five values for $x$ and calculate the corresponding values of $g(x)$.<br /><br />1. When $x = -2$:<br /> $g(-2) = \frac{4}{3}(2)^{-2} = \frac{4}{3} \cdot \frac{1}{4} = 1$<br /> So, the point is $(-2, 1)$.<br /><br />2. When $x = -1$:<br /> $g(-1) = \frac{4}{3}(2)^{-1} = \frac{4}{3} \cdot \frac{1}{2} = \frac{2}{3}$<br /> So, the point is $(-1, \frac{2}{3})$.<br /><br />3. When $x = 0$:<br /> $g(0) = \frac{4}{3}(2)^{0} = \frac{4}{3} \cdot 1 = \frac{4}{3}$<br /> So, the point is $(0, \frac{4}{3})$.<br /><br />4. When $x = 1$:<br /> $g(1) = \frac{4}{3}(2)^{1} = \frac{4}{3} \cdot 2 = \frac{8}{3}$<br /> So, the point is $(1, \frac{8}{3})$.<br /><br />5. When $x = 2$:<br /> $g(2) = \frac{4}{3}(2)^{2} = \frac{4}{3} \cdot 4 = \frac{16}{3}$<br /> So, the point is $(2, \frac{16}{3})$.<br /><br />Now, let's plot these points on the graph and connect them to form the exponential function $g(x)=\frac {4}{3}(2)^{x}$.
Haz clic para calificar: