Problemas

r a y=lim _(x arrow 0) (1-cos x)/(x)=0
Solución

Joaquínprofessionell · Tutor durante 6 años

4.4 (249 votos)
Responder
Para resolver la expresión dada, primero simplifiquemos la fracción:<br /><br />$\frac{\frac{-\cos x}{x}}{x} = \frac{-\cos x}{x^2}$<br /><br />Ahora, podemos evaluar el límite cuando $x$ tiende a $0$:<br /><br />$\lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2
Haz clic para calificar: