Pagina de inicio
/
Matemáticas
/
r a y=lim _(x arrow 0) (1-cos x)/(x)=0

Problemas

r a y=lim _(x arrow 0) (1-cos x)/(x)=0

r a y=lim _(x arrow 0) (1-cos x)/(x)=0

Solución

avatar
Joaquínprofessionell · Tutor durante 6 años
expert verifiedVerificación de expertos
4.4 (249 votos)

Responder

Para resolver la expresión dada, primero simplifiquemos la fracción:<br /><br />$\frac{\frac{-\cos x}{x}}{x} = \frac{-\cos x}{x^2}$<br /><br />Ahora, podemos evaluar el límite cuando $x$ tiende a $0$:<br /><br />$\lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2} = \lim_{x \to 0} \frac{-\cos x}{x^2
Haz clic para calificar: