Pagina de inicio
/
Matemáticas
/
Di) 2 Which expression is equivalent to (64x^-5y^10z^5)/((4y^3)z^(-2)^2) for all values of x y, and zwhere the expression is defined? Do (4y^4z^9)/(x^5) Do (16y^4)/(x^5)z^(9) Do (16y^7z^7)/(z^5) Do (4y^4)/(x^5)z^(9)

Problemas

Di) 2 Which expression is equivalent to (64x^-5y^10z^5)/((4y^3)z^(-2)^2) for all values of x y,
and zwhere the expression is defined?
Do	(4y^4z^9)/(x^5)
Do	(16y^4)/(x^5)z^(9)
Do	(16y^7z^7)/(z^5)
Do	(4y^4)/(x^5)z^(9)

Di) 2 Which expression is equivalent to (64x^-5y^10z^5)/((4y^3)z^(-2)^2) for all values of x y, and zwhere the expression is defined? Do (4y^4z^9)/(x^5) Do (16y^4)/(x^5)z^(9) Do (16y^7z^7)/(z^5) Do (4y^4)/(x^5)z^(9)

Solución

avatar
Alessandraélite · Tutor durante 8 años
expert verifiedVerificación de expertos
4.5 (286 votos)

Responder

To simplify the expression $\frac {64x^{-5}y^{10}z^{5}}{(4y^{3}z^{-2})^{2}}$, we can follow these steps:<br /><br />1. Simplify the denominator:<br />$(4y^{3}z^{-2})^{2} = 16y^{6}z^{-4}$<br /><br />2. Rewrite the expression with the simplified denominator:<br />$\frac {64x^{-5}y^{10}z^{5}}{16y^{6}z^{-4}}$<br /><br />3. Simplify the expression by canceling out common factors:<br />$\frac {64}{16} \cdot \frac {x^{-5}}{1} \cdot \frac {y^{10}}{y^{6}} \cdot \frac {z^{5}}{z^{-4}} = 4x^{-5}y^{4}z^{9}$<br /><br />Therefore, the expression equivalent to $\frac {64x^{-5}y^{10}z^{5}}{(4y^{3}z^{-2})^{2}}$ is $\frac {4y^{4}z^{9}}{x^{5}}$.
Haz clic para calificar: