Problemas

3 int _(1)^4(3x^2-4x+5)/(6sqrt (x))dx
Solución

Cristinamaestro · Tutor durante 5 años

3.8 (267 votos)
Responder
Para resolver la integral dada, primero simplificamos la expresión dentro de la integral:<br /><br />\[ \int_{1}^{4} \frac{3x^2 - 4x + 5}{6\sqrt{x}} \, dx \]<br /><br />Dividimos cada término del numerador por \(6\sqrt{x}\):<br /><br />\[ \int_{1}^{4} \left( \frac{3x^2}{6\sqrt{x}} - \frac{4x}{6\sqrt{x}} + \frac{5}{6\sqrt{x}} \right) \, dx \]<br /><br />Simplificamos cada término:<br /><br />\[ \int_{1}^{4} \left( \frac{x^{3/2}}{2} - \frac{2x^{1/2}}{3} + \frac{5x^{-1/2}}{6} \right) \, dx \]<br /><br />Ahora integramos término por término:<br /><br />\[ \int_{1}^{4} \frac{x^{3/2}}{2} \, dx - \int_{1}^{4} \frac{2x^{1/2}}{3} \, dx + \int_{1}^{4} \frac{5x^{-1/2}}{6} \, dx \]<br /><br />Integramos cada término:<br /><br />\[ \frac{1}{2} \int_{1}^{4} x^{3/2} \, dx - \frac{2}{3} \int_{1}^{4} x^{1/2} \, dx + \frac{5}{6} \int_{1}^{4} x^{-1/2} \, dx \]<br /><br />Usamos la fórmula de integración de potencias:<br /><br />\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \]<br /><br />Aplicamos esto a cada término:<br /><br />\[ \frac{1}{2} \left[ \frac{x^{5/2}}{\frac{5}{2}} \right]_{1}^{4} - \frac{2}{3} \left[ \frac{x^{3/2}}{\frac{3}{2}} \right]_{1}^{4} + \frac{5}{6} \left[ \frac{x^{1/2}}{\frac{1}{2}} \right]_{1}^{4} \]<br /><br />Simplificamos los términos:<br /><br />\[ \frac{1}{2} \cdot \frac{2}{5} \left[ x^{5/2} \right]_{1}^{4} - \frac{2}{3} \cdot \frac{2}{3} \left[ x^{3/2} \right]_{1}^{4} + \frac{5}{6} \cdot 2 \left[ x^{1/2} \right]_{1}^{4} \]<br /><br />\[ \frac{1}{5} \left[ x^{5/2} \right]_{1}^{4} - \frac{4}{9} \left[ x^{3/2} \right]_{1}^{4} + \frac{5}{3} \left[ x^{1/2} \right]_{1}^{4} \]<br /><br />Evaluamos los límites:<br /><br />\[ \frac{1}{5} \left( 4^{5/2} - 1^{5/2} \right) - \frac{4}{9} \left( 4^{3/2} - 1^{3/2} \right) + \frac{5}{3} \left( 4^{1/2} - 1^{1/2} \right) \]<br /><br />Simplificamos cada término:<br /><br />\[ \frac{1}{5} \left( 32 - 1 \right) - \frac{4}{9} \left( 8 - 1 \right) + \frac{5}{3} \left( 2 - 1 \right) \]<br /><br />\[ \frac{1}{5} \cdot 31 - \frac{4}{9} \cdot 7 + \frac{5}{3} \cdot 1 \]<br /><br />\[ \frac{31}{5} - \frac{28}{9} + \frac{5}{3} \]<br /><br />Convertimos a un denominador común:<br /><br />\[ \frac{31}{5} = \frac{279}{45} \]<br />\[ \frac{28}{9} = \frac{140}{45} \]<br />\[ \frac{5}{3} = \frac{75}{45} \]<br /><br />Sumamos los términos:<br /><br />\[ \frac{279}{45} - \frac{140}{45}
Haz clic para calificar: