Pagina de inicio
/
Matemáticas
/
6. Which expression is equivalent to (m^5n^-4)/(v^-3) for all values of m, n, and v where the expression is defined? m^5n^4v^3 (m^5v^3)/(n^4) (1)/(m^5)n^(4v^3) (v^3)/(m^5)n^(4)

Problemas

6. Which expression is equivalent to (m^5n^-4)/(v^-3) for all values of m, n, and
v where the expression is defined?
m^5n^4v^3
(m^5v^3)/(n^4)
(1)/(m^5)n^(4v^3)
(v^3)/(m^5)n^(4)

6. Which expression is equivalent to (m^5n^-4)/(v^-3) for all values of m, n, and v where the expression is defined? m^5n^4v^3 (m^5v^3)/(n^4) (1)/(m^5)n^(4v^3) (v^3)/(m^5)n^(4)

Solución

avatar
Carolinamaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.5 (255 votos)

Responder

To simplify the expression $\frac {m^{5}n^{-4}}{v^{-3}}$, we can use the properties of exponents.<br /><br />First, let's rewrite the expression using positive exponents:<br />$\frac {m^{5}n^{-4}}{v^{-3}} = \frac {m^{5}}{n^{4}} \cdot v^{3}$<br /><br />Now, we can simplify the expression by multiplying the terms:<br />$\frac {m^{5}}{n^{4}} \cdot v^{3} = \frac {m^{5}v^{3}}{n^{4}}$<br /><br />Therefore, the expression equivalent to $\frac {m^{5}n^{-4}}{v^{-3}}$ is $\frac {m^{5}v^{3}}{n^{4}}$.
Haz clic para calificar: