Pagina de inicio
/
Matemáticas
/
44. Right-triangle Delta RST will be rotnted about the x-axis to form a right cinenlar conc. How long in coordinate units, is the radius of the cono's base? R G. 3 H. J.6 K. 9

Problemas

44. Right-triangle Delta RST will be rotnted about the x-axis to
form a right cinenlar conc. How long in coordinate
units, is the radius of the cono's base?
R
G. 3
H.
J.6
K. 9

44. Right-triangle Delta RST will be rotnted about the x-axis to form a right cinenlar conc. How long in coordinate units, is the radius of the cono's base? R G. 3 H. J.6 K. 9

Solución

avatar
Beatrizexperto · Tutor durante 3 años
expert verifiedVerificación de expertos
4.5 (277 votos)

Responder

To find the radius of the cone's base, we need to determine the length of the shorter leg of the right triangle $\Delta RST$.<br /><br />Given that the triangle is reflected about the x-axis, the coordinates of the vertices will change as follows:<br />- R(-3, 0) will become R'(-3, 0)<br />- S(0, 3) will become S'(0, -3)<br />- T(3, 0) will become T'(3, 0)<br /><br />Now, we can use the distance formula to find the length of the shorter leg of the triangle:<br />Distance between R' and S' = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$<br />Distance between R' and S' = $\sqrt{(0 - (-3))^2 + (-3 - 0)^2}$<br />Distance between R S' = $\sqrt{3^2 + (-3)^2}$<br />Distance between R' and S' = $\sqrt{9 + 9}$<br />Distance between R' and S' = $\sqrt{18}$<br />Distance between R' and S' = $3\sqrt{2}$<br /><br />Therefore, the radius of the cone's base is $3\sqrt{2}$ coordinate units.<br /><br />Answer: G. 3
Haz clic para calificar: