Pagina de inicio
/
Matemáticas
/
Given the function f(x)=4x+5 what is the range when the domain is -2,-1,0,1,2 -2,-1,0,1,2 -3,1,5,9,13 1/2,1/3,1/4,1/5 -37,-36,45,46,47

Problemas

Given the function f(x)=4x+5 what is the range when the domain is
 -2,-1,0,1,2 
 -2,-1,0,1,2 
 -3,1,5,9,13 
 1/2,1/3,1/4,1/5 
 -37,-36,45,46,47

Given the function f(x)=4x+5 what is the range when the domain is -2,-1,0,1,2 -2,-1,0,1,2 -3,1,5,9,13 1/2,1/3,1/4,1/5 -37,-36,45,46,47

Solución

avatar
Gustavomaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.5 (175 votos)

Responder

To find the range of the function $f(x)=4x+5$ for each given domain, we need to substitute each value from the domain into the function and calculate the corresponding output values.<br /><br />1. For the domain $\{ -2,-1,0,1,2\}$:<br /> $f(-2) = 4(-2) + 5 = -3$<br /> $f(-1) = 4(-1) + 5 = 1$<br /> $f(0) = 4(0) + 5 = 5$<br /> $f(1) = 4(1) + 5 = 9$<br /> $f(2) = 4(2) + 5 = 13$<br /> Therefore, the range for this domain is $\{ -3, 1, 5, 9, 13\}$.<br /><br />2. For the domain $\{ -2,-1,0,1,2\}$ (again):<br /> The range is the same as in the previous case, which is $\{ -3, 1, 5, 9, 13\}$.<br /><br />3. For the domain $\{ -3,1,5,9,13\}$:<br /> $f(-3) = 4(-3) + 5 = -7$<br /> $f(1) = 4(1) + 5 = 9$<br /> $f(5) = 4(5) + 5 = 25$<br /> $f(9) = 4(9) + 5 = 41$<br /> $f(13) = 4(13) + 5 = 57$<br /> Therefore, the range for this domain is $\{ -7, 9, 25, 41, 57\}$.<br /><br />4. For the domain $\{ 1/2,1/3,1/4,1/5\}$:<br /> $f(1/2) = 4(1/2) + 5 = 7$<br /> $f(1/3) = 4(1/3) + 5 = 7 1/3$<br /> $f(1/4) = 4(1/4) + 5 = 6$<br /> $f(1/5) = 4(1/5) + 5 = 5 4/5$<br /> Therefore, the range for this domain is $\{ 7, 7 1/3, 6, 5 4/5\}$.<br /><br />5. For the domain $\{ -37,-36,45,46,47\}$:<br /> $f(-37) = 4(-37) + 5 = -143$<br /> $f(-36) = 4(-36) + 5 = -139$<br /> $f(45) = 4(45) + 5 = 185$<br /> $f(46) = 4(46) + 5 = 189$<br /> $f(47) = 4(47) + 5 = 193$<br /> Therefore, the range for this domain is $\{ -143, -139, 185, 189, 193\}$.
Haz clic para calificar: