Problemas
 with a rational exponent.
7^(2)/(3)
2^(3)/(7)
7^(3)/(2)
C 3^(7)/(2)](https://static.questionai.mx/resource%2Fqaiseoimg%2F202501%2Frewrite-sqrt-273-rational-exponent723237732c-372-tlZwXVsnmv0S.jpg?x-oss-process=image/resize,w_600,h_600/quality,q_35/format,webp)
Rewrite sqrt [2](7^3) with a rational exponent. 7^(2)/(3) 2^(3)/(7) 7^(3)/(2) C 3^(7)/(2)
Solución

Gerardomaestro · Tutor durante 5 años

4.2 (262 votos)
Responder
To rewrite $\sqrt [2]{7^{3}}$ with a rational exponent, we need to express the square root as a fractional exponent.<br /><br />The square root of a number can be written as the number raised to the power of $\frac{1}{2}$. So, $\sqrt [2]{7^{3}}$ can be written as $7^{\frac{3}{$.<br /><br />Therefore, the correct answer is $7^{\frac{3}{2}}$.
Haz clic para calificar: