Problemas

Multiply (sqrt (30x^3y^2))(sqrt (5x^4y^3)) A 5x^6y^4sqrt (6) B 5x^3y^2sqrt (6xy) C 5x^2y^2sqrt (6xy) D 6x^3y^2sqrt (5xy)
Solución

Pedroprofessionell · Tutor durante 6 años

4.1 (274 votos)
Responder
To solve the given expression, we need to multiply the two square roots together.<br /><br />Given expression: $(\sqrt {30x^{3}y^{2}})(\sqrt {5x^{4}y^{3}})$<br /><br />Step 1: Multiply the two square roots.<br />$(\sqrt {30x^{3}y^{2}})(\sqrt {5x^{4}y^{3}}) = \sqrt {(30x^{3}y^{2})(5x^{4}y^{3})}$<br /><br />Step 2: Simplify the expression inside the square root.<br />$(30x^{3}y^{2})(5x^{4}y^{3}) = 150x^{7}y^{5}$<br /><br />Step 3: Take the square root of the simplified expression.<br />$\sqrt {150x^{7}y^{5}} = 5x^{3}y^{2}\sqrt {6xy}$<br /><br />Therefore, the correct answer is B) $5x^{3}y^{2}\sqrt {6xy}$.
Haz clic para calificar: