Pagina de inicio
/
Matemáticas
/
The perimeter of an equilateral triangle is 360 centimeters. The height of this triangle is ksqrt (3) centimeters. What is the value of k? square

Problemas

The perimeter of an equilateral triangle is 360 centimeters. The height of this
triangle is ksqrt (3) centimeters. What is the value of k?
square

The perimeter of an equilateral triangle is 360 centimeters. The height of this triangle is ksqrt (3) centimeters. What is the value of k? square

Solución

avatar
Abrilmaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.1 (316 votos)

Responder

To find the value of \( k \) in the height of the equilateral triangle, we need to use the formula for the height of an equilateral triangle.<br /><br />Given:<br />- Perimeter of the equilateral triangle = 360 cm<br />- Height of the triangle = \( k\sqrt{3} \) cm<br /><br />First, we find the side length of the equilateral triangle:<br />\[ \text{Side length} = \frac{\text{Perimeter}}{3} = \frac{360}{3} = 120 \text{ cm} \]<br /><br />Next, we use the formula for the height of an equilateral triangle:<br />\[ \text{Height} = \frac{\sqrt{3}}{2} \times \text{Side length} \]<br /><br />Substitute the side length into the height formula:<br />\[ k\sqrt{3} = \frac{\sqrt{3}}{2} \times 120 \]<br /><br />Simplify the equation:<br />\[ k\sqrt{3} = 60\sqrt{3} \]<br /><br />Divide both sides by \(\sqrt{3}\):<br />\[ k = 60 \]<br /><br />Therefore, the value of \( k \) is \( \boxed{60} \).
Haz clic para calificar: