Problemas

The perimeter of an equilateral triangle is 360 centimeters. The height of this triangle is ksqrt (3) centimeters. What is the value of k? square
Solución

Abrilmaestro · Tutor durante 5 años

4.1 (316 votos)
Responder
To find the value of \( k \) in the height of the equilateral triangle, we need to use the formula for the height of an equilateral triangle.<br /><br />Given:<br />- Perimeter of the equilateral triangle = 360 cm<br />- Height of the triangle = \( k\sqrt{3} \) cm<br /><br />First, we find the side length of the equilateral triangle:<br />\[ \text{Side length} = \frac{\text{Perimeter}}{3} = \frac{360}{3} = 120 \text{ cm} \]<br /><br />Next, we use the formula for the height of an equilateral triangle:<br />\[ \text{Height} = \frac{\sqrt{3}}{2} \times \text{Side length} \]<br /><br />Substitute the side length into the height formula:<br />\[ k\sqrt{3} = \frac{\sqrt{3}}{2} \times 120 \]<br /><br />Simplify the equation:<br />\[ k\sqrt{3} = 60\sqrt{3} \]<br /><br />Divide both sides by \(\sqrt{3}\):<br />\[ k = 60 \]<br /><br />Therefore, the value of \( k \) is \( \boxed{60} \).
Haz clic para calificar: