Pagina de inicio
/
Matemáticas
/
Find the inverse of the function f(x)=3x-7 Drag numbers to the blanks to complete the expression for the inverse. f^-1(x) f^-1(x)=ldots x+ -(7)/(3) (1)/(3) -(4)/(3) (3)/(7) -(3)/(7) -(1)/(3) (7)/(3)

Problemas

Find the inverse of the function f(x)=3x-7
Drag numbers to the blanks to complete the expression for the inverse. f^-1(x)
f^-1(x)=ldots x+
-(7)/(3)
(1)/(3)
-(4)/(3)
(3)/(7)
-(3)/(7)
-(1)/(3)
(7)/(3)

Find the inverse of the function f(x)=3x-7 Drag numbers to the blanks to complete the expression for the inverse. f^-1(x) f^-1(x)=ldots x+ -(7)/(3) (1)/(3) -(4)/(3) (3)/(7) -(3)/(7) -(1)/(3) (7)/(3)

Solución

avatar
Salmamaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
3.6 (210 votos)

Responder

To find the inverse of the function \( f(x) = 3x - 7 \), follow these steps:<br /><br />### Step 1: Replace \( f(x) \) with \( y \)<br />Let \( y = 3x - 7 \).<br /><br />### Step 2: Swap \( x \) and \( y \)<br />To find the inverse, interchange \( x \) and \( y \):<br />\[<br />x = 3y - 7<br />\]<br /><br />### Step 3: Solve for \( y \)<br />Rearrange the equation to isolate \( y \):<br />\[<br />x + 7 = 3y<br />\]<br />\[<br />y = \frac{x + 7}{3}<br />\]<br /><br />Thus, the inverse function is:<br />\[<br />f^{-1}(x) = \frac{x + 7}{3}.<br />\]<br /><br />### Step 4: Match the given options<br />Rewrite \( f^{-1}(x) \) as:<br />\[<br />f^{-1}(x) = \frac{1}{3}x + \frac{7}{3}.<br />\]<br /><br />From the provided options, the correct numbers to drag into the blanks are:<br />\[<br />f^{-1}(x) = \frac{1}{3}x + \frac{7}{3}.<br />\]
Haz clic para calificar: