Problemas

Solve the right triangle with the given side and angle alpha =12^circ ,c=26 aapprox 5.3 (Do not round until the final answer Then round to the nearest tenth as needed.) bapprox 25.4 (Do not round until the final answer.Then round to the nearest tenth as needed.) beta approx 78^circ (Do not round until the final answer.Then round to the nearest whole number as needed.)
Solución

Caridadélite · Tutor durante 8 años

4.0 (259 votos)
Responder
Para resolver el triángulo rectángulo con los datos dados, podemos usar las funciones trigonométricas básicas.<br /><br />Dado que tenemos el ángulo $\alpha = 12^{\circ}$ y la hipotenusa $c = 26$, podemos usar la función seno para encontrar el cateto opuesto $a$:<br /><br />$\sin(\alpha) = \frac{a}{c}$<br /><br />$a = c \cdot \sin(\alpha)$<br /><br />$a = 26 \cdot \sin(12^{\circ})$<br /><br />$a \approx 5.3$<br /><br />Ahora, podemos usar la función coseno para encontrar el cateto adyacente $b$:<br /><br />$\cos(\alpha) = \frac{b}{c}$<br /><br />$b = c \cdot \cos(\alpha)$<br /><br />$b = 26 \cdot \cos(12^{\circ})$<br /><br />$b \approx 25.4$<br /><br />Finalmente, podemos encontrar el ángulo $\beta$ usando la relación entre los ángulos en un triángulo rectángulo:<br /><br />$\beta = 90^{\circ} - \alpha$<br /><br />$\beta = 90^{\circ} - 12^{\circ}$<br /><br />$\beta \approx 78^{\circ}$<br /><br />Por lo tanto, las respuestas son:<br /><br />$a \approx 5.3$<br /><br />$b \approx 25.4$<br /><br />$\beta \approx 78^{\circ}$
Haz clic para calificar: