Pagina de inicio
/
Matemáticas
/
Describe and correct the error a student made when starting to solve the equation 9^x+3=2^2x-5 8^x+3=2^2x-5 (2^3)^x+3=2^2x-5 2^3x+3=2^2x-5 B A. The student did not convert 8 to the correct power of 2 B. The student should have expressed the initial rational exponent as the sum of two rational exponents C. The student did not distribute 3in(2^3)^x+3 across x+3 D. The student should have divided both sides by 2^2 to simplify the expression.

Problemas

Describe and correct the error a student made when starting to solve the equation 9^x+3=2^2x-5
8^x+3=2^2x-5
(2^3)^x+3=2^2x-5
2^3x+3=2^2x-5
B A. The student did not convert 8 to the correct power of 2
B. The student should have expressed the initial rational exponent as the sum of two rational exponents
C. The student did not distribute 3in(2^3)^x+3 across x+3
D. The student should have divided both sides by 2^2 to simplify the expression.

Describe and correct the error a student made when starting to solve the equation 9^x+3=2^2x-5 8^x+3=2^2x-5 (2^3)^x+3=2^2x-5 2^3x+3=2^2x-5 B A. The student did not convert 8 to the correct power of 2 B. The student should have expressed the initial rational exponent as the sum of two rational exponents C. The student did not distribute 3in(2^3)^x+3 across x+3 D. The student should have divided both sides by 2^2 to simplify the expression.

Solución

avatar
Isaacélite · Tutor durante 8 años
expert verifiedVerificación de expertos
4.4 (242 votos)

Responder

La respuesta correcta es la opción A. El estudiante no convirtió 8 en la potencia correcta de 2.<br /><br />El error que cometió el estudiante fue al intentar igualar $8^{x+3}$ con $2^{2x-5}$. En lugar de convertir 8 a la potencia correcta de 2, debería haber escrito $8$ como $(2^3)^{x+3}$.<br /><br />La solución correcta sería:<br /><br />$9^{x+3}=2^{2x-5}$<br />$(3^2)^{x+3}=(2^{3})^{x+3}$<br />$3^{2x+6}=2^{3x+9}$<br />$\log_3(3^{2x+6})=\log_3(2^{3x+9})$<br />$2x+6=3x+9$<br />$-x=3$<br />$x=-3$<br /><br />Por lo tanto, la respuesta correcta es la opción A. El estudiante no convirtió 8 en la potencia correcta de 2.
Haz clic para calificar: