Pagina de inicio
/
Física
/
2. Un tanque de almacenamiento tiene forma cilíndrica además de una altura de 4.5 m y un radio de 7 m, con un posible error de 0.23 m Encuentra el error de aproximación.

Problemas

2. Un tanque de almacenamiento tiene forma cilíndrica además de una altura de 4.5 m y un radio de
7 m, con un posible error de 0.23 m Encuentra el error de aproximación.

2. Un tanque de almacenamiento tiene forma cilíndrica además de una altura de 4.5 m y un radio de 7 m, con un posible error de 0.23 m Encuentra el error de aproximación.

Solución

avatar
Raúlveterano · Tutor durante 9 años
expert verifiedVerificación de expertos
4.4 (236 votos)

Responder

Para encontrar el error de aproximación, primero necesitamos calcular el volumen del tanque de almacenamiento cilíndrico utilizando la fórmula del volumen de un cilindro:<br /><br />\[ V = \pi r^2 h \]<br /><br />Donde:<br />- \( V \) es el volumen del cilindro<br />- \( \pi \) es una constante aproximada igual a 3.14159<br />- \( r \) es el radio del cilindro<br />- \( h \) es la altura del cilindro<br /><br />Dado que el radio \( r \) es 7 m y la altura \( h \) es 4.5 m, sustituimos estos valores en la fórmula:<br /><br />\[ V = \pi \times (7 \, \text{m})^2 \times 4.5 \, \text{m} \]<br /><br />\[ V = \pi \times 49 \, \text{m}^2 \times 4.5 \, \text{m} \]<br /><br />\[ V = \pi \times 220.5 \, \text{m}^3 \]<br /><br />\[ V \approx 3.14159 \times 220.5 \, \text{m}^3 \]<br /><br />\[ V \approx 692.65 \, \text{m}^3 \]<br /><br />Ahora, calculamos el error de aproximación utilizando el error relativo:<br /><br />\[ \text{Error de aproximación} = \text{Error relativo} \times \text{Volumen real} \]<br /><br />Dado que el error relativo es 0.23 m (o 0.23 m / 7 m = 0.0329), sustituimos estos valores en la fórmula:<br /><br />\[ \text{Error de aproximación} = 0.0329 \times 692.65 \, \text{m}^3 \]<br /><br />\[ \text{Error de aproximación} \approx 22.75 \, \text{m}^3 \]<br /><br />Por lo tanto, el error de aproximación del tanque de almacenamiento cilíndrico es aproximadamente 22.75 m³.
Haz clic para calificar: