Problemas

MONDAY 1. Solve for x: -4(x-6)=-5(x-5) square 3. Graph the solution to the following absolute value inequality. vert -2p-8vert +10lt -4
Solución

Samuelveterano · Tutor durante 9 años

4.3 (274 votos)
Responder
1. \(x = 1\)<br />2. The inequality \(|-2p-8|+10 < -4\) has no solution.
Explicar
## Step 1:<br />For the first problem, we are given the equation \(-4(x-6)=-5(x-5)\). To solve for \(x\), we need to distribute the numbers outside the parentheses to the terms inside the parentheses.<br /><br />### \(-4(x-6) = -4x + 24\)<br />### \(-5(x-5) = -5x + 25\)<br /><br />## Step 2:<br />Next, we combine like terms on both sides of the equation.<br /><br />### \(-4x + 24 = -5x + 25\)<br /><br />## Step 3:<br />To isolate \(x\), we add \(5x\) to both sides of the equation.<br /><br />### \(x = 1\)<br /><br />## Step 4:<br />For the second problem, we are given the absolute value inequality \(|-2p-8|+10 < -4\). The absolute value of a number is always non-negative, so the sum of an absolute value and a positive number cannot be less than a negative number.
Haz clic para calificar: