Pagina de inicio
/
Matemáticas
/
Write the equation that models the function described. Shift the parent function, y=log_(2)x up three units and left 4 units. y=3+log_(2)(x+4) y=-4+log_(2)(x+3) y=4+log_(2)(x-3) -4+log_(2)(x-3) y=-3+log_(2)(x+4) y=4+log_(2)(x+3) y=3+log_(2)(x-4) y=-3+log_(2)(x-4)

Problemas

Write the equation that models the function described.
Shift the parent function, y=log_(2)x up three units and left 4 units.
y=3+log_(2)(x+4)
y=-4+log_(2)(x+3)
y=4+log_(2)(x-3)
-4+log_(2)(x-3)
y=-3+log_(2)(x+4)
y=4+log_(2)(x+3)
y=3+log_(2)(x-4)
y=-3+log_(2)(x-4)

Write the equation that models the function described. Shift the parent function, y=log_(2)x up three units and left 4 units. y=3+log_(2)(x+4) y=-4+log_(2)(x+3) y=4+log_(2)(x-3) -4+log_(2)(x-3) y=-3+log_(2)(x+4) y=4+log_(2)(x+3) y=3+log_(2)(x-4) y=-3+log_(2)(x-4)

Solución

avatar
Pedromaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.1 (300 votos)

Responder

The equation that models the function described is \(y=\log_{2}(x+4)+3\).

Explicar

## Step 1<br />The problem involves shifting the parent function \(y=\log_{2}x\) up by three units and left by four units. This is a transformation of the parent function.<br /><br />## Step 2<br />The transformation of a function can be represented by the equation \(y=f(x-h)+k\), where \(h\) represents the horizontal shift and \(k\) represents the vertical shift.<br /><br />## Step 3<br />In this case, the function is shifted up by three units, which means \(k=3\). The function is also shifted left by four units, which means \(h=-4\).<br /><br />## Step 4<br />Substituting \(h\) and \(k\) into the equation, we get \(y=\log_{2}(x+4)+3\).
Haz clic para calificar: