Pagina de inicio
/
Matemáticas
/
Graph the exponential function. g(x)=(5)/(3)(2)^x Plot five points on the graph of the function. Then click on the graph-a-function button.

Problemas

Graph the exponential function.
g(x)=(5)/(3)(2)^x
Plot five points on the graph of the function. Then click on the graph-a-function button.

Graph the exponential function. g(x)=(5)/(3)(2)^x Plot five points on the graph of the function. Then click on the graph-a-function button.

Solución

avatar
Lucianamaestro · Tutor durante 5 años
expert verifiedVerificación de expertos
4.2 (285 votos)

Responder

To graph the exponential function $g(x)=\frac {5}{3}(2)^{x}$, we need to plot five points on the graph of the function. Let's choose five values for $x$ and calculate the corresponding values of $g(x)$.<br /><br />Step 1: Choose five values for $x$.<br />Let's choose $x = -2, -1, 0, 1, 2$.<br /><br />Step 2: Calculate the corresponding values of $g(x)$.<br />For $x = -2$:<br />$g(-2) = \frac{5}{3}(2)^{-2} = \frac{5}{3} \cdot \frac{1}{4} = \frac{5}{12}$<br /><br />For $x = -1$:<br />$g(-1) = \frac{5}{3}(2)^{-1} = \frac{5}{3} \cdot \frac{1}{2} = \frac{5}{6}$<br /><br />For $x = 0$:<br />$g(0) = \frac{5}{3}(2)^{0} = \frac{5}{3} \cdot 1 = \frac{5}{3}$<br /><br />For $x = 1$:<br />$g(1) = \frac{5}{3}(2)^{1} = \frac{5}{3} \cdot 2 = \frac{10}{3}$<br /><br />For $x = 2$:<br />$g(2) = \frac{5}{3}(2)^{2} = \frac{5}{3} \cdot 4 = \frac{20}{3}$<br /><br />Step 3: Plot the points on the graph.<br />The points to plot are:<br />$(-2, \frac{5}{12})$, $(-1, \frac{5}{6})$, $(0, \frac{5}{3})$, $(1, \frac{10}{3})$, $(2, \frac{20}{3})$<br /><br />Step 4: Click on the graph-a-function button to plot the points and visualize the exponential function.<br /><br />Answer: The five points on the graph of the function $g(x)=\frac {5}{3}(2)^{x}$ are $(-2, \frac{5}{12})$, $(-1, \frac{5}{6})$, $(0, \frac{5}{3})$, $(1, \frac{10}{3})$, $(2, \frac{20}{3})$.
Haz clic para calificar: