Pagina de inicio
/
Química
/
Using the following equation: Fe_(2)O_(3)(s)+3H_(2)(g)-2Fe(s)+3H_(2)O(l) How many moles of iron can be made from 6 moles H_(2) 9 moles Fe 6 moles Fe 4 moles Fe 2 moles Fe

Problemas

Using the following equation:
Fe_(2)O_(3)(s)+3H_(2)(g)-2Fe(s)+3H_(2)O(l)
How many moles of iron can be made from 6 moles
H_(2)
9 moles Fe
6 moles Fe
4 moles Fe
2 moles Fe

Using the following equation: Fe_(2)O_(3)(s)+3H_(2)(g)-2Fe(s)+3H_(2)O(l) How many moles of iron can be made from 6 moles H_(2) 9 moles Fe 6 moles Fe 4 moles Fe 2 moles Fe

Solución

avatar
Mónicaveterano · Tutor durante 10 años
expert verifiedVerificación de expertos
4.6 (281 votos)

Responder

To determine how many moles of iron can be made from 6 moles of hydrogen ($H_2$), we need to use the stoichiometric coefficients from the balanced chemical equation:<br /><br />\[ Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(l) \]<br /><br />From the equation, we see that 3 moles of $H_2$ produce 2 moles of $Fe$. Therefore, we can set up a proportion to find out how many moles of $Fe$ are produced from 6 moles of $H_2$:<br /><br />\[ \frac{3 \text{ moles } H_2}{2 \text{ moles } Fe} = \frac{6 \text{ moles } H_2}{x \text{ moles } Fe} \]<br /><br />Solving for $x$:<br /><br />\[ x = \frac{6 \text{ moles } H_2 \times 2 \text{ moles } Fe}{3 \text{ moles } H_2} \]<br /><br />\[ x = 4 \text{ moles } Fe \]<br /><br />So, 6 moles of $H_2$ can produce 4 moles of $Fe$. Therefore, the correct answer is:<br /><br />4 moles Fe
Haz clic para calificar: