Problemas

Newtons for 10 seconds.What is the car's final velocity? 9. A408 superball strikes a wall with a velocity of 10m/s that is normal to the wall. It bounces away at a velocity of 7m/s , still normal to the wall. What is the ball's change in momentum? If the bounce lasted 0.1 s, what is the force between the ball and the wall?
Solución

Leticiaveterano · Tutor durante 10 años

3.8 (160 votos)
Responder
To solve this problem, we need to calculate the change in momentum and then use that to find the force.<br /><br />1. **Change in Momentum:**<br /><br /> The initial momentum of the ball before it strikes the wall is:<br /> \[<br /> p_{\text{initial}} = m \cdot v_{\text{initial}}<br /> \]<br /> where \( m = 0.408 \) kg and \( v_{\text{initial}} = 10 \) m/s.<br /> \[<br /> p_{\text{initial}} = 0.408 \times 10 = 4.08 \text{ kg} \cdot \text{m/s}<br /> \]<br /><br /> The final momentum of the ball after it bounces away from the wall is:<br /> \[<br /> p_{\text{final}} = m \cdot v_{\text{final}}<br /> \]<br /> where \( v_{\text{final}} = -7 \) m/s (negative because it is in the opposite direction).<br /> \[<br /> p_{\text{final}} = 0.408 \times (-7) = -2.856 \text{ kg} \cdot \text{m/s}<br /> \]<br /><br /> The change in momentum (\( \Delta p \)) is:<br /> \[<br /> \Delta p = p_{\text{final}} - p_{\text{initial}}<br /> \]<br /> \[<br /> \Delta p = -2.856 - 4.08 = -6.936 \text{ kg} \cdot \text{m/s}<br /> \]<br /><br />2. **Force Calculation:**<br /><br /> The average force exerted on the ball by the wall can be found using the impulse-momentum theorem:<br /> \[<br /> F \cdot \Delta t = \Delta p<br /> \]<br /> where \( \Delta t = 0.1 \) s.<br /><br /> Solving for \( F \):<br /> \[<br /> F = \frac{\Delta p}{\Delta t}<br /> \]<br /> \[<br /> F = \frac{-6.936}{0.1} = -69.36 \text{ N}<br /> \]<br /><br />The negative sign indicates that the force is in the direction opposite to the ball's initial motion.<br /><br />So, the ball's change in momentum is \(-6.936 \text{ kg} \cdot \text{m/s}\), and the force between the ball and the wall is \(69.36 \text{ N}\).
Haz clic para calificar: