Problemas

A given mass of air has a volume of 6.00 L at 101 kPa. At constant temperature, the pressure is decreased to 25.0kPa Calculate the final volume for the gas. 24.21 1201 10.01 30.01
Solución

Ulisesprofessionell · Tutor durante 6 años

4.3 (143 votos)
Responder
To solve this problem, we can use Boyle's Law, which states that for a given mass of gas at constant temperature, the pressure and volume are inversely proportional. Mathematically, this can be expressed as:<br /><br />\[ P_1V_1 = P_2V_2 \]<br /><br />Given:<br />- Initial pressure, \( P_1 = 101 \, \text{kPa} \)<br />- Initial volume, \( V_1 = 6.00 \, \text{L} \)<br />- Final pressure, \( P_2 = 25.0 \, \text{kPa} \)<br /><br />We need to find the final volume, \( V_2 \).<br /><br />Rearranging the equation to solve for \( V_2 \):<br /><br />\[ V_2 = \frac{P_1V_1}{P_2} \]<br /><br />Substituting the given values:<br /><br />\[ V_2 = \frac{101 \, \text{kPa} \times 6.00 \, \text{L}}{25.0 \, \text{kPa}} \]<br /><br />\[ V_2 = \frac{606 \, \text{kPa} \cdot \text{L}}{25.0 \, \text{kPa}} \]<br /><br />\[ V_2 = 24.24 \, \text{L} \]<br /><br />Therefore, the final volume of the gas is approximately 24.24 L. The closest option to this value is 24.21 L.
Haz clic para calificar: