Problemas

3. An object has a kinctic energy of 88 J and a mass of 45 kg , how fast is the object moving?
Solución

Gabrielmaestro · Tutor durante 5 años

4.5 (267 votos)
Responder
To speed of the object, we can use the formula for kinetic energy:<br /><br />\[ KE = \frac{1}{2}mv^2 \]<br /><br />where:<br />- \( KE \) is the kinetic energy,<br />- \( m \) is the mass of the object,<br />- \( v \) is the speed of the object.<br /><br />Given:<br />- \( KE = 88 \, J \)<br />- \( m = 45 \, kg \)<br /><br />We need to solve for \( v \):<br /><br />\[ 88 = \frac{1}{2} \times 45 \times v^2 \]<br /><br />First, multiply both sides by 2 to get rid of the fraction:<br /><br />\[ 176 = 45 \times v^2 \]<br /><br />Next, divide both sides by 45:<br /><br />\[ v^2 = \frac{176}{45} \]<br /><br />\[ v^2 \approx 3.9111 \]<br /><br />Finally, root of both sides to solve for \( v \):<br /><br />\[ v \approx \sqrt{3.9111} \]<br /><br />\[ v \approx 1.98 \, m/s \]<br /><br />So, the object is moving at approximately \( 1.98 \, m/s \).
Haz clic para calificar: