Problemas

Answer Attemptiout of 2
square](https://static.questionai.mx/resource%2Fqaiseoimg%2F202502%2Fgiven-xgt-0-rewrite-following-expression-simplest-tCaG0lDAHL0K.jpg?x-oss-process=image/resize,w_600,h_600/quality,q_50/format,webp)
Given xgt 0 rewrite the following expression in simplest radical form. sqrt (64x)cdot sqrt [4](81x^11) Answer Attemptiout of 2 square
Solución

Hugomaestro · Tutor durante 5 años

4.0 (254 votos)
Responder
To simplify the given expression, we need to rewrite it in terms of the fourth root.<br /><br />The expression is $\sqrt {64x}\cdot \sqrt [4]{81x^{11}}$.<br /><br />We can rewrite the square root as a fourth root: $\sqrt {64x} = \sqrt [4]{64x^2}$.<br /><br />Now, we can rewrite the expression as $\sqrt [4]{64x^2} \cdot \sqrt [4]{81x^{11}}$.<br /><br />Using the property of radicals, we can combine the two expressions: $\sqrt [4]{64x^2 \cdot 81x^{11}}$.<br /><br />Simplifying the expression inside the fourth root, we get $\sqrt [4]{5184x^{13}}$.<br /><br />Therefore, the simplified expression is $\sqrt [4]{5184x^{13}}$.
Haz clic para calificar: