Problemas

Given a gas is at 23 L and 333 K, what is the volume of the gas when temperature changes to 310 K? Round to one decimal place. square
Solución

Franciscaprofessionell · Tutor durante 6 años

4.0 (194 votos)
Responder
To solve this problem, we can use the ideal gas law, which states that the volume of a gas is directly proportional to its temperature, provided the pressure and the amount of gas remain constant.<br /><br />The formula for the ideal gas law is:<br /><br />\[ V_1/T_1 = V_2/T_2 \]<br /><br />where:<br />- \( V_1 \) is the initial volume of the gas<br />- \( T_1 \) is the initial temperature of the gas<br />- \( V_2 \) is the final volume of the gas<br />- \( T_2 \) is the final temperature of the gas<br /><br />Given:<br />- \( V_1 = 23 \) L<br />- \( T_1 = 333 \) K<br />- \( T_2 = 310 \) K<br /><br />We need to find \( V_2 \).<br /><br />Rearranging the formula to solve for \( V_2 \):<br /><br />\[ V_2 = V_1 \times \frac{T_2}{T_1} \]<br /><br />Substituting the given values:<br /><br />\[ V_2 = 23 \times \frac{310}{333} \]<br /><br />Now, calculate the value:<br /><br />\[ V_2 \approx 21.8 \]<br /><br />Therefore, the volume of the gas when the temperature changes to 310 K is approximately 21.8 L.
Haz clic para calificar: