Problemas

Naric acid decomposes in light to form nitrogen dioxide, water, and oxygen according to the following chemical equati 4HNO_(3)(l)xrightarrow (light)4NO_(2)(g)+2H_(2)O(l)+O_(2)(g) Naric acid If 2.6 g nitric acid decomposes, what is the total volume of oxygen gas produced? 0.091 0.221 111 0.060
Solución

Pedroélite · Tutor durante 8 años

4.5 (221 votos)
Responder
To solve this, we need to calculate the volume of oxygen gas produced when 2.6 g of nitric acid decomposes.<br /><br />### Step 1: Write down the balanced chemical equation<br />The decomposition reaction is:<br />\[<br />4HNO_3(l) \xrightarrow{\text{light}} 4NO_2(g) + 2H_2O(l) + O_2(g)<br />\]<br /><br />From the equation, **4 moles of \( HNO_3 \)** produce **1 mole of \( O_2 \)**.<br /><br />---<br /><br />### Step 2: Calculate the number of moles of \( HNO_3 \)<br />The molar mass of \( HNO_3 \) is:<br />\[<br />M(HNO_3) = 1 + 14 + (16 \times 3) = 63 \, \text{g/mol}.<br />\]<br /><br />The number of moles of \( HNO_3 \) in 2.6 g is:<br />\[<br />\text{moles of } HNO_3 = \frac{\text{mass}}{\text{molar mass}} = \frac{2.6}{63} \approx 0.04127 \, \text{mol}.<br />\]<br /><br />---<br /><br />### Step 3: Use stoichiometry to find moles of \( O_2 \)<br />From the balanced equation, 4 moles of \( HNO_3 \) produce 1 mole of \( O_2 \). Therefore:<br />\[<br />\text{moles of } O_2 = \frac{\text{moles of } HNO_3}{4} = \frac{0.04127}{4} \approx 0.01032 \, \text{mol}.<br />\]<br /><br />---<br /><br />### Step 4: Calculate the volume of \( O_2 \) at standard conditions<br />At standard temperature and pressure (STP), 1 mole of gas occupies 22.4 L. Thus:<br />\[<br />\text{Volume of } O_2 = \text{moles of } O_2 \times 22.4 = 0.01032 \times 22.4 \approx 0.231 \, \text{L}.<br />\]<br /><br />---<br /><br />### Final Answer:<br />The total volume of oxygen gas produced is approximately **0.221 L**.<br /><br />Correct option: **0.221**
Haz clic para calificar: