Problemas

Find the density of seawater at a depth where the pressure is 300 atm if the density at the surface is 1100kg/m^3 Seawater has a bulk modulus of 2.3times 10^9N/m^2 Bulk modulus is defined to be Bequiv (rho _(0)Delta P)/(Delta rho ) Answer in units of kg/m^3
Solución

Armandoexperto · Tutor durante 3 años

4.0 (236 votos)
Responder
To find the density of seawater at a depth where the pressure is 300 atm, we can use the bulk modulus formula:<br /><br />$B \equiv \frac{\rho_0 \Delta P}{\Delta \rho}$<br /><br />Given:<br />- Density at the surface, $\rho_0 = 1100 \, \text{kg/m}^3$<br />- Bulk modulus, $B = 2.3 \times 10^9 \, \text{N/m}^2$<br />- Pressure increase, $\Delta P = 300 \, \text{atm} = 300 \times 101325 \, \text{Pa} = 3.04 \times 10^7 \, \text{Pa}$<br /><br />We need to find the change in density, $\Delta \rho$.<br /><br />Rearranging the bulk modulus formula to solve for $\Delta \rho$:<br /><br />$\Delta \rho = \frac{\rho_0 \Delta P}{B}$<br /><br />Substituting the given values:<br /><br />$\Delta \rho = \frac{1100 \, \text{kg/m}^3 \times 3.04 \times 10^7 \, \text{Pa}}{2.3 \times 10^9 \, \text{N/m}^2} \approx 137.30 \, \text{kg/m}^3$<br /><br />The density of seawater at the depth where the pressure is 300 atm is:<br /><br />$\rho = \rho_0 + \Delta \rho = 1100 \, \text{kg/m}^3 + 137.30 \, \text{kg/m}^3 \approx 1237.30 \, \text{kg/m}^3$<br /><br />Therefore, the density of seawater at a depth where the pressure is 300 atm is approximately $1237.30 \, \text{kg/m}^3$.
Haz clic para calificar: